metabelian, supersoluble, monomial
Aliases: C12.17D6, C32⋊9SD16, D4.(C3⋊S3), (C3×D4).5S3, (C3×C6).35D4, C3⋊3(D4.S3), C32⋊4C8⋊4C2, C32⋊4Q8⋊3C2, C6.23(C3⋊D4), (D4×C32).2C2, (C3×C12).13C22, C2.5(C32⋊7D4), C4.2(C2×C3⋊S3), SmallGroup(144,97)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C32⋊9SD16
G = < a,b,c,d | a3=b3=c8=d2=1, ab=ba, cac-1=a-1, ad=da, cbc-1=b-1, bd=db, dcd=c3 >
Subgroups: 170 in 60 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, D4, Q8, C32, Dic3, C12, C2×C6, SD16, C3×C6, C3×C6, C3⋊C8, Dic6, C3×D4, C3⋊Dic3, C3×C12, C62, D4.S3, C32⋊4C8, C32⋊4Q8, D4×C32, C32⋊9SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3⋊S3, C3⋊D4, C2×C3⋊S3, D4.S3, C32⋊7D4, C32⋊9SD16
Character table of C32⋊9SD16
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 8A | 8B | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 2 | 36 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 18 | 18 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | -2 | -1 | -1 | 2 | -1 | 2 | 0 | -1 | 2 | -1 | -1 | -2 | 1 | 1 | 1 | 1 | 1 | 1 | -2 | 0 | 0 | 2 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | -2 | -1 | 2 | -1 | -1 | 2 | 0 | -1 | -1 | -1 | 2 | 1 | 1 | 1 | -2 | 1 | -2 | 1 | 1 | 0 | 0 | -1 | -1 | -1 | 2 | orthogonal lifted from D6 |
ρ7 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ9 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | 2 | 0 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 2 | -1 | 2 | -1 | -1 | 2 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | -2 | 2 | -1 | -1 | -1 | 2 | 0 | 2 | -1 | -1 | -1 | 1 | 1 | -2 | 1 | 1 | 1 | -2 | 1 | 0 | 0 | -1 | -1 | 2 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 0 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | -2 | -1 | -1 | -1 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | 1 | 0 | 0 | -1 | 2 | -1 | -1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | -2 | 0 | -1 | -1 | 2 | -1 | -√-3 | 0 | √-3 | -√-3 | 0 | √-3 | -√-3 | √-3 | 0 | 0 | 1 | -2 | 1 | 1 | complex lifted from C3⋊D4 |
ρ15 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | -2 | 0 | -1 | 2 | -1 | -1 | 0 | -√-3 | -√-3 | -√-3 | √-3 | √-3 | √-3 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ16 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | -2 | 0 | -1 | -1 | -1 | 2 | √-3 | -√-3 | √-3 | 0 | √-3 | 0 | -√-3 | -√-3 | 0 | 0 | 1 | 1 | 1 | -2 | complex lifted from C3⋊D4 |
ρ17 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | -2 | 0 | -1 | -1 | -1 | 2 | -√-3 | √-3 | -√-3 | 0 | -√-3 | 0 | √-3 | √-3 | 0 | 0 | 1 | 1 | 1 | -2 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | -2 | 0 | -1 | -1 | 2 | -1 | √-3 | 0 | -√-3 | √-3 | 0 | -√-3 | √-3 | -√-3 | 0 | 0 | 1 | -2 | 1 | 1 | complex lifted from C3⋊D4 |
ρ19 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | -2 | 0 | -1 | 2 | -1 | -1 | 0 | √-3 | √-3 | √-3 | -√-3 | -√-3 | -√-3 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ20 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | -2 | 0 | 2 | -1 | -1 | -1 | -√-3 | -√-3 | 0 | √-3 | √-3 | -√-3 | 0 | √-3 | 0 | 0 | 1 | 1 | -2 | 1 | complex lifted from C3⋊D4 |
ρ21 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | -2 | 0 | 2 | -1 | -1 | -1 | √-3 | √-3 | 0 | -√-3 | -√-3 | √-3 | 0 | -√-3 | 0 | 0 | 1 | 1 | -2 | 1 | complex lifted from C3⋊D4 |
ρ22 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ23 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ24 | 4 | -4 | 0 | 4 | -2 | -2 | -2 | 0 | 0 | -4 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
ρ25 | 4 | -4 | 0 | -2 | -2 | 4 | -2 | 0 | 0 | 2 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
ρ26 | 4 | -4 | 0 | -2 | -2 | -2 | 4 | 0 | 0 | 2 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
ρ27 | 4 | -4 | 0 | -2 | 4 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
(1 61 31)(2 32 62)(3 63 25)(4 26 64)(5 57 27)(6 28 58)(7 59 29)(8 30 60)(9 52 33)(10 34 53)(11 54 35)(12 36 55)(13 56 37)(14 38 49)(15 50 39)(16 40 51)(17 45 71)(18 72 46)(19 47 65)(20 66 48)(21 41 67)(22 68 42)(23 43 69)(24 70 44)
(1 15 45)(2 46 16)(3 9 47)(4 48 10)(5 11 41)(6 42 12)(7 13 43)(8 44 14)(17 31 39)(18 40 32)(19 25 33)(20 34 26)(21 27 35)(22 36 28)(23 29 37)(24 38 30)(49 60 70)(50 71 61)(51 62 72)(52 65 63)(53 64 66)(54 67 57)(55 58 68)(56 69 59)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 4)(3 7)(6 8)(9 13)(10 16)(12 14)(18 20)(19 23)(22 24)(25 29)(26 32)(28 30)(33 37)(34 40)(36 38)(42 44)(43 47)(46 48)(49 55)(51 53)(52 56)(58 60)(59 63)(62 64)(65 69)(66 72)(68 70)
G:=sub<Sym(72)| (1,61,31)(2,32,62)(3,63,25)(4,26,64)(5,57,27)(6,28,58)(7,59,29)(8,30,60)(9,52,33)(10,34,53)(11,54,35)(12,36,55)(13,56,37)(14,38,49)(15,50,39)(16,40,51)(17,45,71)(18,72,46)(19,47,65)(20,66,48)(21,41,67)(22,68,42)(23,43,69)(24,70,44), (1,15,45)(2,46,16)(3,9,47)(4,48,10)(5,11,41)(6,42,12)(7,13,43)(8,44,14)(17,31,39)(18,40,32)(19,25,33)(20,34,26)(21,27,35)(22,36,28)(23,29,37)(24,38,30)(49,60,70)(50,71,61)(51,62,72)(52,65,63)(53,64,66)(54,67,57)(55,58,68)(56,69,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(18,20)(19,23)(22,24)(25,29)(26,32)(28,30)(33,37)(34,40)(36,38)(42,44)(43,47)(46,48)(49,55)(51,53)(52,56)(58,60)(59,63)(62,64)(65,69)(66,72)(68,70)>;
G:=Group( (1,61,31)(2,32,62)(3,63,25)(4,26,64)(5,57,27)(6,28,58)(7,59,29)(8,30,60)(9,52,33)(10,34,53)(11,54,35)(12,36,55)(13,56,37)(14,38,49)(15,50,39)(16,40,51)(17,45,71)(18,72,46)(19,47,65)(20,66,48)(21,41,67)(22,68,42)(23,43,69)(24,70,44), (1,15,45)(2,46,16)(3,9,47)(4,48,10)(5,11,41)(6,42,12)(7,13,43)(8,44,14)(17,31,39)(18,40,32)(19,25,33)(20,34,26)(21,27,35)(22,36,28)(23,29,37)(24,38,30)(49,60,70)(50,71,61)(51,62,72)(52,65,63)(53,64,66)(54,67,57)(55,58,68)(56,69,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(18,20)(19,23)(22,24)(25,29)(26,32)(28,30)(33,37)(34,40)(36,38)(42,44)(43,47)(46,48)(49,55)(51,53)(52,56)(58,60)(59,63)(62,64)(65,69)(66,72)(68,70) );
G=PermutationGroup([[(1,61,31),(2,32,62),(3,63,25),(4,26,64),(5,57,27),(6,28,58),(7,59,29),(8,30,60),(9,52,33),(10,34,53),(11,54,35),(12,36,55),(13,56,37),(14,38,49),(15,50,39),(16,40,51),(17,45,71),(18,72,46),(19,47,65),(20,66,48),(21,41,67),(22,68,42),(23,43,69),(24,70,44)], [(1,15,45),(2,46,16),(3,9,47),(4,48,10),(5,11,41),(6,42,12),(7,13,43),(8,44,14),(17,31,39),(18,40,32),(19,25,33),(20,34,26),(21,27,35),(22,36,28),(23,29,37),(24,38,30),(49,60,70),(50,71,61),(51,62,72),(52,65,63),(53,64,66),(54,67,57),(55,58,68),(56,69,59)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,4),(3,7),(6,8),(9,13),(10,16),(12,14),(18,20),(19,23),(22,24),(25,29),(26,32),(28,30),(33,37),(34,40),(36,38),(42,44),(43,47),(46,48),(49,55),(51,53),(52,56),(58,60),(59,63),(62,64),(65,69),(66,72),(68,70)]])
C32⋊9SD16 is a maximal subgroup of
S3×D4.S3 Dic6.19D6 D12⋊9D6 D12.22D6 C24⋊8D6 C24.26D6 SD16×C3⋊S3 C24.32D6 C62.131D4 C62.74D4 C62.75D4 He3⋊8SD16 C36.17D6 C33⋊12SD16 C33⋊14SD16 C33⋊24SD16
C32⋊9SD16 is a maximal quotient of
C12.10Dic6 C62.114D4 C62.116D4 C36.17D6 He3⋊9SD16 C33⋊12SD16 C33⋊14SD16 C33⋊24SD16
Matrix representation of C32⋊9SD16 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 64 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 64 |
0 | 69 | 0 | 0 | 0 | 0 |
18 | 61 | 0 | 0 | 0 | 0 |
0 | 0 | 31 | 3 | 0 | 0 |
0 | 0 | 45 | 42 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
3 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,64,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,8,0,0,0,0,0,0,64],[0,18,0,0,0,0,69,61,0,0,0,0,0,0,31,45,0,0,0,0,3,42,0,0,0,0,0,0,0,72,0,0,0,0,1,0],[1,3,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72] >;
C32⋊9SD16 in GAP, Magma, Sage, TeX
C_3^2\rtimes_9{\rm SD}_{16}
% in TeX
G:=Group("C3^2:9SD16");
// GroupNames label
G:=SmallGroup(144,97);
// by ID
G=gap.SmallGroup(144,97);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,48,73,218,116,50,964,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^8=d^2=1,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d=c^3>;
// generators/relations
Export